It was such a radical change, in fact, that the early Macintosh development team in ‘82, ‘83, ‘84 had to write an entirely new operating system from the ground up. Now, this is an interesting little message, and it’s a lesson that has since, I think, been forgotten or lost or something, and that is, namely, that the OS is the interface.

So here we have a bunch of stuff, some images. And, using a hand, we can actually exercise six degrees of freedom, six degrees of navigational control. And it’s fun to fly through Mr. Beckett’s eye. And you can come back out through the scary orangutan. And that’s all well and good. Let’s do something a little more difficult. Here, we have a whole bunch of disparate images. We can fly around them. So navigation is a fundamental issue. You have to be able to navigate in 3D. Much of what we want computers to help us with in the first place is inherently spatial. And the part that isn’t spatial can often be spatialized to allow our wetware to make greater sense of it. Now we can distribute this stuff in many different ways. So we can throw it out like that. Let’s reset it. We can organize it this way.

The author of this new pointing device is sitting over there, so I can pull this from there to there. These are unrelated machines, right? So the computation is space soluble and network soluble. So I’m going to leave that over there because I have a question for Paul. Paul is the designer of this wand, and maybe its easiest for him to come over here and tell me in person what’s going on. So let me get some of these out of the way. Let’s pull this apart: I’ll go ahead and explode it. Kevin, can you help? Let me see if I can help us find the circuit board. Mind you, it’s a sort of gratuitous field-stripping exercise, but we do it in the lab all the time. All right. So collaborative work, whether it’s immediately co-located or distant and distinct, is always important. And again, that stuff needs to be undertaken in the context of space.